
The cluster structure in collapsing animals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2000 J. Phys. A: Math. Gen. 33 3653

(http://iopscience.iop.org/0305-4470/33/19/303)

Download details:

IP Address: 171.66.16.118

The article was downloaded on 02/06/2010 at 08:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/33/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 33 (2000) 3653–3667. Printed in the UK PII: S0305-4470(00)11537-9

The cluster structure in collapsing animals

E J Janse van Rensburg
Department of Mathematics and Statistics, York University, Toronto, Ontario, Canada M3J 1P3

Received 1 February 2000

Abstract. In this paper I revisit the connection between edge percolation and the collapse
transition in lattice animals. It was shown by Domb (1976 J. Phys. A: Math. Gen. 9 L141) that the
critical percolation point is a θ -transition in a certain model of self-interacting animals. I extend this
result by showing that the free energy of lattice animals in the cycle–contact model is non-analytic in
contact- and cycle-activities at points other than the critical percolation point. This correspondence
between percolation and collapsing animals suggests that the collapse transition in this model may
be related to percolation. Contact–collapse in animals is then studied from a percolation of clusters
of contacts perspective. I first argue that there is a critical activity for percolation of clusters of
contacts, and then investigate this numerically.

1. Introduction

Lattice animals are commonly used as a model of a branched polymer in a dilute solution
(Lubensky and Isaacson 1979). The definition of a lattice animal as a connected subgraph of a
lattice dates back to cell-growth problems (Harary 1960). Of particular interest are models of
self-interacting animals (see, for example, Derrida and Hermann 1983, Gaunt and Flesia 1990,
1991, Flesia and Gaunt 1992), which undergoes a collapse transition (θ -transition) under
suitable conditions. The collapse transition has been studied in models of both linear and
branched polymers over a period of several decades. The interest in these models started with
Mazur and McCrackin (1968), and subsequent investigations includes the studies by Mazur
and McIntyre (1975), Sun et al (1980), Park et al (1992), Flesia et al (1993, 1994), Tesi et al
(1996) and Madras and Janse van Rensburg (1997).

An edge animal is a connected subgraph of a lattice, and is also said to be weakly embedded
in the lattice. Let an be the number of edge animals, consisting of n edges, counted up to
translational equivalence, in the square lattice. It can be checked that a0 = 1, a1 = 2, a2 = 6,
a3 = 14 and so on. The asymptotic behaviour of an has been investigated in studies of
percolation (Stauffer 1979, Essam 1980), and more recently in high dimensions within the
context of the lace expansion (Hara and Slade 1990, 1995). There is significant evidence that

an � n−θλn (1.1)

where λ is the growth constant of lattice animals which defines the exponential rate of growth
in an. The existence of the limit limn→∞[log an]/n = λ is also known, and is a consequence of
the superadditive nature of log an (Klarner 1967, Klein 1981). The power-law correction to the
exponential nature of an involves the entropic exponent θ , and while the existence of θ has been
established in high dimensions (Hara and Slade 1990), numerical evidence strongly suggests
that the asymptotic behaviour in equation (1.1) is also valid in two dimensions (Whittington
et al 1983).
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A typical model of animal collapse can be defined by introducing a nearest-neighbour
interaction in a model of animals. A contact is a pair of vertices in the animal, which are
adjacent in the lattice, but not adjacent in the animal. Let an(k) be the number of animals
counted by an, but with exactly k contacts in each animal. A model of contact–collapse in
animals is defined by the partition function

Zn(z) =
∑
k�0

an(k) z
k (1.2)

where z = eβ is an activity conjugate to the number of contacts. The limiting free energy in
this model is defined by

F(z) = lim
n→∞

1

n
logZn(z) (1.3)

and its existence is known (see, for example, Flesia and Gaunt 1992). The collapse transition in
the model is exhibited as a non-analyticity in F(z) at the critical point z = zc. The description
of critical behaviour in F(z) is generally the consequence of an assumption that the θ -point
is a tricritical point (this was argued by de Gennes (1975)). In these circumstances, a good
starting point is to treat n and z as scaling fields, and to introduce scale invariance in Zn(z)

by assuming that the partition function is only a function of the rescaled variable nφ(zc − z),
where φ is a crossover exponent which describes the crossover to criticality as z → zc with
increasing n.

While it is the case that tricriticality seems to give an adequate description of collapse in
a model of animals, there is also very little known about the θ -transition. In particular, there
seems to be some evidence that a percolation phenomenon might provide the underlying
mechanism for collapse; numerical evidence for this has been seen in the Monte Carlo
simulations by Madras and Janse van Rensburg (1997), and Janse van Rensburg et al (1999);
and this question was explored explicitly for collapsing self-avoiding walks by Nidras (1997).
The data for the collapsing self-avoiding walk have been interpreted as evidence that the
percolation of clusters and the collapse transition may not occur at the same critical activity
by Nidras (1997). However, a re-examination of the data obtained by Nidras shows that the
estimated critical activity zδ = 1.325 ± 0.012 for percolation of contact clusters in collapsing
walks is numerically indistinguishable from the best estimated critical value zc in the θ -
transition in walks (zc ≈ 1.31, Meirovitch and Lim 1990, Grassberger and Hegger 1995).
Thus, it may be premature to claim a connection either way, and this issue remains unresolved.

It is known that percolation clusters are weighted animals, and the critical percolation point
has been shown to lie on a critical line of θ -transitions (Domb 1976, Grimmet 1989, Flesia et al
1992). Indeed, the only point on this critical line where it is known that the limiting free energy
of self-interacting animals is non-analytic is the percolation point, no proof is known to suggest
the presence of other non-analyticities in the line of θ -transitions. In section 2 I address this
question again. I show that there are other non-analyticities in the limiting free energy by again
exploiting the connection with percolation; in effect, I slightly generalize the proof by Domb
(1976) to achieve this result. In sections 3 and 4 the statistics of contact clusters in collapsing
animals in the contact model is considered. The motivation for this work is the possibility that
there may be an interpretation of the collapse in animals in terms of the percolation of clusters
of contacts. Numerical evidence for percolation of contact clusters is produced in section 4,
where I also estimate the critical activity for this, and its crossover exponent.
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2. Collapsing animals

An animal is characterized by five quantities. These are n, the number of edges, the number
of vertices v, the number of contacts k, the number of independent cycles c and the number of
‘solvent contacts’ (edges in the lattice with exactly one endpoint in the animal) s. There are two
relations between these quantities, namely Euler’s relation v−n+c = 1, and 2 dv = 2n+2k+s.
Moreover, k + s is also the edge perimeter (or simply the perimeter) of the animal. A model
of self-interacting animals (the cycle–contact model) may be defined by the partition function

Zn(y, z) =
∑
c�0

∑
k�0

an(c, k) y
czk (2.1)

where an(c, k) is the number of animals with n edges, c independent cycles and k nearest-
neighbour contacts between vertices adjacent in the lattice, but not in the animal. Note that if
n, c and k are fixed in the animal, then so are v and s. There are two independent activities in
this model, y is an activity conjugate to the number of cycles in the animal and z is conjugate
to the number of contacts. It is known that the limiting free energy

F(y, z) = lim
n→∞

1

n
logZn(y, z) (2.2)

exists for all y < ∞ and z < ∞ (Janse van Rensburg and Madras 1997) in this model, and
that F(y, z) is convex in each of its arguments follows from the Cauchy–Schwartz inequality.

It is also known that F(y, z) is a non-analytic function; the argument uses a connection
between this model, and edge percolation in the hypercubic lattice (Domb 1976, Grimmett
1989, Flesia et al 1992). In particular, let Pn(p) be the probability that the open cluster at the
origin contains n vertices, given that each edge has probability p to be open, and q = 1 − p

to be closed. Then it is known that

lim
n→∞

1

n
logPn(p) =

{
0 if p > pc

−γ (p) if p < pc

(2.3)

where γ (p) > 0 and pc is the critical percolation probability (see, for example, Grimmett
(1989), the proof was due originally to Aizenmann and Newman (1984)). Note now that if
q = 1 − p, then

Pn(p) =
∑
c�0

∑
k�0

v an(c, k)p
nqk+s

= pnq2d+2(d−1)n
∑
c�0

∑
k�0

v an(c, k) q
−2dcq−k. (2.4)

In other words, Pn(p) is a combination of Zn(y, z) and a derivative of Zn(y, z), with y = q−2d

and z = q−1, and multiplied by some factors of p and q. Hence F(y, z) is non-analytic at the
points y = (1 − pc)

−2d and z = (1 − pc)
−1; this follows immediately from equation (2.3).

This point is the critical percolation point in the phase diagram of the animals with limiting
free energy F(y, z) (see figure 1).

It is, in fact, possible to show that there are more non-analyticities in the phase diagram
depicted in figure 1, other than the percolation point. The proof for this relies on equation (2.4),
and is in theorem 1.

Theorem 1. There are non-analyticities in the free energy of animals in the cycle–contact
model at points other than the critical percolation point.
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Figure 1. The phase diagram of lattice animals with a contact and a cycle fugacity. Critical
percolation occurs at (zc, yc) and is marked with •. It is on the intersection of a curve of θ -transitions
(collapsed transitions) and the broken line along which animals are weighted as percolation clusters.
The critical percolation point is a multicritical point which separates the critical line of θ -transitions
into a line of tricritical collapse to a phase rich in contacts (the θ -line), and into a line of tricritical
collapse into a phase rich in cycles (the θ ′-line). Presumably the phases marked ‘cycle phase’ and
‘contact phase’ are not different, but together form a phase of collapsed animals.

Proof. Define the following function:

Rn(u, p) = pnq2d+2(d−1)n
∑
c�0

∑
k�0

v an(c, k) q
−2dc(u/q)k

by introducing a parameter u which takes values in (0, 1] in equation (2.4). It is the case that

Rn(u, p) � Pn(p). (†)

This shows that

lim sup
n→∞

[Rn(u, p)]
1/n � lim

n→∞[Pn(p)]
1/n � e−γ (p)

from equation (2.3), where γ (p) > 0 if p < pc, and γ (p) = 0 if p > pc. On the other hand,
use 2 dv = 2n + 2k + s to see that

Rn(u, p) =
∑
c�0

∑
k�0

v an(c, k)p
nqs+kuk

=
∑
c�0

∑
k�0

v an(c, k)(p/u
2)n(q/u)s+k(u2d)v.

Observe that 1 − p/u2 = q/u if p = −u � 0, and that if p = 0, then 1 − p/u2 � q/u. This
shows that 1 − p/u2 � q/u for all values of p ∈ [0, 1], as long as u ∈ (0, 1]. Thus,

Rn(u, p) �
∑
c�0

∑
k�0

v an(c, k)(p/u
2)n(1 − p/u2)s+k(u2d)v = Qn(p/u

2, u2d).

Qn(p/u
2, u2d) is the probability that the open cluster at the origin has size n in a combined

edge–site percolation model where edges are open with probabilityp/u2, and sites are occupied



Cluster structure in collapsing animals 3657

with probability u2d , provided that p � u2 (and where every vertex in the cluster is occupied).
If u is close enough to 1, then p can be picked as large enough that the open cluster at the origin
is infinite with positive probability (this follows from the fundamental theorem of percolation).
Thus, there is a uc < 1 so that if u > uc, then limn→∞[Qn(p/u

2, u2d)]1/n = 1, provided that
p/u2 is large enough. Comparing this with equation (†) above, and using equation (2.3), this
shows that

lim
n→∞[Rn(u, p)]

1/n = 1

if u > uc and p is large enough. Thus, there is a non-analyticity at a critical value of p (say
pu) for every u > uc.

Rn(u, p) is a combination of Zn(q
−2d , u/q) and its derivative, and since

limn→∞[Rn(u, p)]1/n is non-analytic, so will F(q−2d , u/q) be for each value of u ∈ (uc, 1]
and at a critical value of q. Since the critical percolation point is not on the line (z, y) =
(u/q, 1/q2d) if u < 1, this non-analyticity is not the critical percolation point, and presumably
corresponds to a collapse into the cycle phase. �

The usual finite-size tricritical assumptions indicate that the finite-size free energy,
Fn(σ, τ ) = [logZn(y, z)]/n, is a function of two scaling fields σ and τ (these are appropriate
combinations of y and z, and both σ or τ approaches zero as the animals approaches a critical
point). It is expected from equation (2.2) that if σ → 0, then

Fn ∼ 1

n
f̂ (nφkσ ) (2.5)

along the θ -line in figure 1, and

Fn ∼ 1

n
f̂ (nφcτ ) (2.6)

along the θ ′-line in figure 1. The exponents φk and φc are crossover exponents describing
the crossover behaviour in the model to criticality with increasing n, with respect to contact
and cycle collapse, respectively. Numerical simulations indicate that φk = 0.62 ± 0.03 and
φc = 0.62 ± 0.04 (Janse van Rensburg et al 1999). It is unclear that the cycle- and contact-
driven collapse transitions in figure 1 are in different universality classes, and claims exist for
both cases (see Janse van Rensburg et al 1999 for a discussion).

The collapse transition is best characterized by a change in metric behaviour. Two-
dimensional expanded animals have metric exponent ν = 0.644 ± 0.002 (Janse van Rensburg
and Madras 1997), but generally ν ≈ 0.53 along the critical curve (Janse van Rensburg et al
1999). This value is also the metric exponent for critical percolation clusters (Stauffer 1979,
Essam 1980, Grimmett 1989), and if percolation is interpreted as a tricritical θ -point, then
the metric exponent of critical percolation clusters can be shown to be ν = 48

91 = 0.5275 . . . .

In view of this, it seems tempting to attempt to interpret collapse in animals as a percolation
phenomenon along the entire critical curve in figure 1.

3. Clusters in collapsing animals

The discussion in this section will be limited to animals undergoing contact–collapse (with
y = 1 in equation (2.1)). This is the ‘contact’ model of collapsing animals (Flesia and Gaunt
(1992); see also equations (1.2) and (1.3)). It is known that the free energy in this model exists,
and it is given by equation (1.3). Moreover, a number of bounds on F(z) have been derived
(Flesia et al 1994). It does not follow from theorem 1 that F(z) is non-analytic; observe that
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Figure 2. Clusters of contacts in an animal. This animal has one cluster of size
6, two clusters of size 2 each, and one cluster of size 1.

F(z) = F(1, z), see equation (2.2). A ‘cluster’ in an animal will be a group of contacts which
are near to one another in the animal. With increasing densities of contacts, these clusters of
contacts will grow, and they should percolate at a high enough density. Moreover, it also seems
not unlikely that a change in the distribution of clusters at the critical point of contact collapse
may be expected. This possibility was explored in self-avoiding walks by Nidras (1997), who
studied the percolation of clusters as a critical phenomenon.

Two contacts are said to be adjacent if they contain two vertices (one in each) which are a
unit distance apart, or if they contain the same vertex. A cluster in an animal is a maximal set
of pairwise-adjacent contacts (maximal with respect to adjacency; there are no more contacts
which can be added to enlarge the cluster). An animal with a number of clusters is illustrated
in figure 2. Observe that any edge in the animal with both endpoints in a cluster is considered
to be part of the cluster. Edges with exactly one endpoint in a cluster are perimeter edges
of the cluster (if the cluster is part of an animal, then at least some of the perimeter edges
will be animal edges as well). Note that an edge cannot be in the perimeter of two clusters
simultaneously. In this sense, the clusters are independent; the event that a cluster occurs in an
animal is predicated only on the occurrence of its perimeter in the animal, and it is otherwise
independent of what occurs elsewhere in the animal.

The size of a cluster is the number of contacts it contains (as opposed to the number of
edges it contains). Suppose that there are D(k) clusters with k contacts (and any number of
animal edges), and with one vertex rooted at the origin. The number of clusters counted up
to translation will be denoted by d(k). Any cluster counted by D(k) (or by d(k)) has at most
2(2d − 1)k animal edges (and also at most 2(2d − 1)k perimeter edges).

The top vertex and the bottom vertex in a cluster are the lexicographic most and
lexicographic least vertices, respectively. Two clusters can be concatenated by translating
the second cluster until its bottom vertex is one edge from the top vertex of the first animal. A
new contact will form between these vertices. If the first cluster is rooted and has k1 contacts,
then it can be chosen in D(k1) ways. The second cluster cannot be rooted, and if it has k2

contacts, then it can be chosen in d(k2) ways. The outcome for every pair of clusters is a
unique rooted cluster with k1 + k2 + 1 contacts. Thus

D(k1)d(k2) � D(k1 + k2 + 1). (3.1)

Since every contact and every animal edge in a cluster counted by d(k2) has both endpoints
in the cluster, there are at most 2k2 vertices which can be chosen as a root. Thus d(k2) �
D(k2) � 2 k2D(k2), and equation (3.1) can be manipulated into

D(k1 − 1)D(k2 − 1) � 2(k1 + k2 − 2)D(k1 + k2 − 1) (3.2)

and thus D(k − 1) satisfies a generalized supermultiplicative inequality discussed by
Hammersley (1962). The consequence is the following theorem.
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Theorem 2. There exists a constant δ such that

lim
k→∞

[D(k)]1/k = δ.

Proof. Note that each cluster can be changed into a lattice animal by turning all the contacts
in it into edges. The resulting animal will have at most k + 2(2d − 1)k = (4d − 1)k edges.
On the other hand, some animals with at most (4d − 1)k edges can be turned into clusters by
changing some edges into contacts. Thus, D(k) �

∑(4d−1)k
m=k

(
m

k

)
Am, where Am is the number

of animals with m edges, rooted at the origin. It is known that Am � Km, for some finite
constant K (Klein 1981), and thus D(k) � C

(4d−1)k
0 for some finite constant C0. Together

with the supermultiplicative inequality in equation (3.2), this implies the existence of the limit
as claimed (Hammersley 1962). �

The generating function of clusters is defined by

D(z) =
∞∑
k=0

D(k) zk. (3.3)

An immediate consequence of theorem 2 is that D(z) < ∞ if z < δ−1, and D(z) = ∞ if
z > δ−1. These results imply that there is an infinite cluster at the root with probability one
in a model where clusters are generated by D(z). To see this, let α be the cluster at the origin
and note that theorem 2 implies that

D(k) = δk+o(k). (3.4)

If the size of α is |α|, then the probability that α has size m is given by

Pz(|α| = m) = D(m) zm

D(z)
. (3.5)

Pz(|α| = m) is a probability distribution, and moreover, if Pz(|α| � m) is the probability that
a cluster of size at most m is found in a model where clusters are generated by D(z), then

Pz(|α| � m) =
m∑

k=0

Pz(|α| = k)

{
> 0 if m < ∞ and z < δ−1

= 0 if z > δ−1.
(3.6)

In other words, if m is taken to infinity, then

Pz(|α| < ∞) =
{

1 if z < δ−1

0 if z > δ−1.
(3.7)

Consider now the situation where α is a cluster at the origin in an animal. The probability
θn(α) that a cluster α occurs at the origin in an animal of size n is found by noting that α must
occur, and that the perimeter of α must also occur. In other words, if α has k(α) contacts then
its weight is zk(α), and if Pn(per(α)) is the probability that the perimeter of α occurs in an
animal of size n, then

θn(α) = zk(α)

D(z)
Pn(per(α)) � zk(α)

D(z)
. (3.8)

Thus, the probability that a cluster of size exactly k appears in an animal of size n is bounded
from above by

θn(|α| = k) � D(k) zk

D(z)
(3.9)
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and consequently

θn(|α| � k) �
∑

l�k D(l) zl

D(z)
. (3.10)

Since the right-hand sides of equations (3.8)–(3.10) are independent of n, take n → ∞, and
define θ = limn→∞ θn. Then, if z > δ−1, it appears from equation (3.6) that θ(|α| � k) = 0,
and if k is taken to infinity, θ(|α| < ∞) = 0. In other words, the probability of a finite cluster
at the origin is zero. Otherwise, the probability that a cluster of size at least k appears is given
by

θ(|α| � k) = D(k) zk

D(z)
(3.11)

because if a cluster of size k appears at the origin, then it may be a subcluster of a larger cluster
(if its perimeter does not occur). If z < δ−1, then from equation (3.4),

θ(∞) = lim
k→∞

θ(|α| � k) = 0 (3.12)

and this shows that θ(|α| < ∞) = 1 − θ(∞) = 1, in other words, the cluster at the origin
is finite. These arguments shows that there is a percolation phenomenon in the animal at a
critical value of z.

4. Numerical study of clusters in lattice animals

Animals of fixed size n and at contact activity z were sampled by a cut-and-paste metropolis
Monte Carlo algorithm (Janse van Rensburg and Madras 1999). Clusters of contacts
were detected in the animals by performing breadth-first searches through the animal, and
statistics were collected on the distribution of clusters, and on the density of contacts in the
neighbourhood of the centre of mass of the animal. The invariant limit distribution of the
algorithm is

*z(k) = an(k) z
k∑

k an(k) zk
(4.1)

for animals with k contacts.
The number of clusters of size s in an animal α of size n will be denoted by ns(α).

Following the arguments in Nidras (1997), the average size of a cluster per animal edge is
given by

〈ns〉z =
∑

α ns(α) z
k(α)

nZn(z)
(4.2)

where k(α) is the number of contacts in the animal α of size n. In analogy with sub-critical
percolation clusters, it should be expected that 〈ns〉z decays exponentially with s (Grimmett
1989), provided that z < zδ , where zδ is the critical activity for percolation of the clusters
(and zc will be reserved for the critical activity for contact collapse). In other words, there is
a correlation size sξ (z) (this may be viewed as a typical cluster size) such that for large n,

〈ns〉z ∼ e−s/sξ (z). (4.3)

The distribution of clusters in animals of size 1000 is plotted in figure 3.
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Figure 3. The distribution 〈ns〉z of clusters as a function of the cluster size s. These data were
collected from animals of size 1000 edges at an activity z = 1.0.

Table 1. sξ (z) (n = 1000).

z sξ (z)

1.0 18.9(1.2)
1.1 22.4(1.0)
1.2 32(2)
1.3 58(4)
1.4 84(6)
1.5 108(16)
1.6 162(22)
1.7 570(150)

As z approaches its critical value, sξ (z) should diverge, this will be consistent with the
view that the size of clusters diverge as the critical point is approached. In fact, the divergence
should occur as

sξ (z) ∼ |zδ − z|−1/φp (4.4)

where φp is the crossover exponent associated with percolation of clusters (Nidras 1997). The
correlation size sξ (z) can be estimated by linear fits from data such as in figure 3, as long as
z < zδ . This was done by assuming a normal dispersion of the data points about the best-fitted
least-squares line (while discarding data at small values of s), and the results are listed in
table 1. Once an estimate of zδ has been made, then these data can be used to estimate φp from
equation (4.4).

If z is large enough, then the cluster of contacts should have percolated, and this shows
itself in the appearance of large clusters in the distribution 〈ns〉z. For example, in figure 4 the
distribution of clusters 〈ns〉z is plotted for n = 1000 at z = 2.5, and a peak appears for clusters
of size around 1500 contacts. Similar effects are seen in data for percolation in a finite square
(Stauffer 1979, Essam 1980).
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Figure 4. The distribution of clusters in an animal of size 1000 and with z = 2.5. The new peak
around 1500 contacts is due to the appearance of a largest cluster of size comparable to that of the
animal. This is an indication that percolation of the contacts occurred.

Figure 5. The distribution of the largest cluster in animals of size 1000 for z = 1.0 (◦), z = 1.5
(�), z = 1.9 (+), z = 2.0 (×) and z = 2.5 (♦).

The distribution of the largest cluster in the animal can also be used to detect a percolation
phenomenon. In figure 4 the peak appearing for large clusters at around 1500 contacts must
be entirely due to the largest clusters, since there is no room in an animal of size 1000 for a
second largest cluster containing a significant number of contacts. In figure 5 the distributions
of only the largest clusters are plotted for a variety of values of z. At z = 1 the largest clusters
are distributed around a small number of contacts, this peak diminishes with increasing z (and
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Figure 6. The distribution of the largest cluster in animals of size 1000 for z = 1.7 (×), z = 1.9
(+) and z = 2.5 (◦).

shift towards slightly larger clusters) with increasing z. At around z = 1.8 the distribution is
flattish, and for larger values of z a peak appears at cluster sizes of over 1000. This appearance
can be interpreted as the appearance of a percolated cluster. In figure 6 the distributions are
plotted for z = 1.7, 1.9 and 2.5, again suggesting a percolation phenomenon around z = 1.8.
A double peak was not observed in any simulation; this suggests that the percolation of clusters
is a continuous transition.

The average size of the largest cluster could be used to determine the critical value of z. If
the distribution of largest clusters is give by ,z(k), then the mean size of the largest cluster is

〈k〉z =
∑

k k ,z(k)∑
k ,z(k)

. (4.5)

Since the percolated cluster will have size O(n), it is necessary to compute 〈k〉z/n, and in the
limit that n → ∞ it should not be unreasonable to expect that

lim
n→∞

〈k〉z
n

{
= 0 if z < zδ

> 0 if z > zδ
(4.6)

where zδ is the critical value of the activity. The data in figures 5 and 6 can be used to estimate
the ratio 〈k〉z/n as a function of z. This was done for a number of different values of n; the
results are plotted in figure 7. The curves are interpolations of the data, and the values of n

were in {200, 400, 600, 800, 1000}.
The curves in figure 7 almost all intersect at about the same point. For values of z less

than that of the intersection the curves decreases with increasing n, and for larger values of
z, the curves increases. If it is assumed that the curves approach a limiting curve with mean
largest cluster size equal to zero for values of z less than the common point of intersection,
then one may take the value of z at the point of intersection as an estimate of the critical value
of z at which percolation of contacts occur. This approach gives

zδ = 1.93 ± 0.05. (4.7)
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Figure 7. The mean largest cluster size per edge in collapsing animals as a function of z. The
common point of intersection may be taken as an estimate of the critical percolation point of
clusters. The size of the animals considered were {200, 400, 600, 800, 1000}.

The collapse transition in animals has been estimated to occur at zc = 2.05 ± 0.16
(Janse van Rensburg et al 1999), with the error bar a 95% confidence interval. This is
not inconsistent with the result in equation (4.7), but more precise measurements of both the
percolation point of contacts, and of collapse in animals will be necessary before one could
separate these two values, or say with some confidence that they are the same.

The estimated value of zδ in equation (4.7) makes it possible to estimate the exponent in
equation (4.4) by using the data in table 1. A log–log weighted least-squares fit to the data
gives

φp = 0.406 ± 0.026 (4.8)

with a 95% confidence interval. The exponent φp has also been estimated for percolation of
contact–clusters in a model of collapsing self-avoiding walks (Nidras 1997). The value found
there is 0.55 ± 0.15 (and note that this includes the estimate in equation (4.8) in its error bar
so that one may not draw any conclusions as to the nature of the relation between contact
percolation in animals and in walks).

More evidence for percolation of contact clusters can be obtained by studying the density
profile of contacts. Two more simulations with animals of sizes 2000 and 3000 were performed
to gain more data on this. The density of contacts in spheres of radii R centred at the centre of
mass is defined by

ρn(z, R) =
∑

α m(α,R) zα

R2Zn(z)
. (4.9)

ρn(z, R) was computed for R � 1 in increments of one lattice step up to a distance of five
times the root mean square radius of gyration of the animal. In figure 8 the density of clusters
is plotted as a function of R for n = 2000 and for values of z in {1, 1.5, 1.8, 2.0, 2.5}. For
z = 1 the density of contacts is low for all values of R, and it goes to zero as R increases.
The non-zero density at small values of R is a consequence of a pattern theorem for animals
(Madras 1999).
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Figure 8. The profiles of contact densities about spheres centred at the centre of mass of animals
of size 2000 edges. The radius R of the spheres in lattice steps along the horizontal axis, while the
density ρn(z, R) is expressed as a number density (number of contacts times π per unit volume).
The profile is flattest for z = 1 (bottom points) but shows a sharp increase with z increasing in
{1, 1.5, 1.8, 2.0, 2.5}. In the collapsed phase the profile shows a sharp boundary, but this is not the
case in the expanded phase.

The density ρn(z, R) is more interesting in the limits that first n → ∞ followed by
R → ∞. In the case that n is large, it seems not unreasonable to expect that the number of
contacts in a sphere of radius R is proportional to R1/ν , since the number of contacts should
be proportional to the number of edges in the animal. Thus, the density should scale as

ρn(z, R) ∼ R1/ν−d if R � nν . (4.10)

In the expanded phase then, ρn(z, R) → 0 if n → ∞ and then R → ∞, but if z > zδ , then
this should approach a constant greater than zero, since v = 1/d in the collapsed phase:

lim
R→∞

lim
n→∞ ρn(z, R)

{
= 0 if z < zδ

> 0 if z > zδ .
(4.11)

An estimate for limR→∞ limn→∞ ρn(z, R) by choosing R to be one-half the root mean square
radius of gyration can be made: in this case R is small enough compared to n to avoid surface
effects, but it is also big enough to include a sizeable number of contacts. The dependence of
this density on z is plotted in figure 9 for values of n ranging from 100 (the points indicated
by ◦) to n = 3000, the points denoted by ∗.

The data in figure 9 seems to approach a limiting curve defined by equation (4.11) with
increasing n, and this is reminiscent of a similar situation in percolation where the probability
that there is an infinite cluster at the origin, P∞(p) is expected to be P∞(p) = 0 if p < pc

and P∞(p) > 0 if p > pc. A rough extrapolation of the data in figure 9 shows that the critical
point (the inflection point in the data could be taken as an estimate of the critical point) should
occur at a value not inconsistent with the value taken from figure 7.



3666 E J Janse van Rensburg

Figure 9. The density of contacts as a function of z in a sphere of radius one-half of the radius
of gyration of the animals. The data denoted by ◦ corresponds to animals of size 100, and
the remaining data corresponds to animals of sizes {200, 400, 600, 800, 1000, 2000, 3000} with
decreasing densities as n increases in the graph from ◦ for n = 100 to ∗ for n = 3000. The data
seems to approach a limiting curve defined by equation (4.11).

5. Conclusions

In this paper the θ -transition in a model of self-interacting animals were considered. In the
first instance, a model of animals in the cycle–contact ensemble was considered, and I proved
that there is a non-analyticity in its free energy at points which include the critical percolation
point. In this case the connection between self-interacting lattice animals and percolation was
exploited.

In the second instance a model of animals in the contact ensemble was considered. It is
not known that there is a non-analyticity in the free energy in this model, but in section 3 the
percolation of clusters of contacts in this model is considered. A numerical study of the clusters
in this model is reported in section 4; in particular, the data shows that there is a percolation
of clusters of contacts at a critical value zδ = δ−1, where δ is the growth constant of clusters
of contacts whose existence was established in section 3. It is not known that the percolation
of clusters are associated with the collapse of animals, but the data on the density profile of
contacts in figures 8 and 9 strongly suggest this.
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